ico-arrow-big-left

Fatal Injury and Violence Analytics - Map View & Analysis

Key Information

Register
Submit
The challenge is finished.
Show Deadlines

Challenge Overview

Welcome to the Fatal Injury and Violence Analytics - Map View challenge! The CDC’s National Center for Injury Prevention and Control (NCIPC) works to understand how injury and violence impact society, and what can be done to prevent it. In the previous proof-of-concept competition we experimented with initial solutions for fatal injury and violence data analytics and visualization dashboard, and we have selected Python/Dash-based solution as the base to move forward. In today's challenge you will build upon the codebase provided in the challenge forum to implement new functionality, explained below.
  • The provided base solution with sample data implements a single-page dashboard providing 2D “metric-vs-time” charts, and some histograms. You will keep that page as is, and add a new page to the solution. In the dashboard header you will implement a simple menu to switch between two pages. You should follow the best code practices, and refactor the code as necessary to support these two pages, and easily add new pages in future.
     
  • The UI aspect of the new page is the following. It should contain a map view of the US, which can be switched between state-level and county-level of details, and allow to color different states / counties according to different data we want to show on the map. At county-level it should allow visualizing data for the entire US, or the selected state only. It should show pop-up tooltips when a state/county is hovered by mouse cursor (for now the tooltip displays the numeric representation of data value represented by that territory color), and redirect to different pages / URLs when different states / counties are clicked.

    Under the map there will be different UI control elements allowing to switch between state-/county-levels, select, and adjust data displayed at the map, according to use case description in the following point.
     
  • The DS aspect of the new page is the following. Assume the fatal injury & violence data are updated yearly. The user wants to see whether the last year's number of cases has a significant up-tick (spike) or down-tick (drop) compared to the previous year. He wants to see it as overall, and as per territory on state- or county-level. He further wants to see it for subsets of data, e.g. only for male injuries due to specified reason. He also wants to do similar analysis for a selected range of years (instead of the latest year) vs previous range.

    For the purposes of this challenge you should go with a simple logic behind up-tick / down-tick detection. Say Ny and Ny - 1 are recorded counts of fatal injury & violence incidents queried by some selection (territory, victim sex, ethnicity, incident type, etc.) for two consecutive years (or periods, in general). For now consider only the relative change of recorded cases between these periods, i.e.

    and we say the cases up- or down-ticked for that query if the absolute change is larger than 10%. When coloring the map according to the change within each territory, use the neutral beige color for territories with smaller changes, shades of red for changes larger than 10% (with red intensity increasing proportional to the growth %), and shades of green for changes below -10% (with green intensity increasing proportional to the drop %). In follow-up challenges we will introduce additional criteria and thresholds, thus write the code in a way facilitating that in future.

    As the data are updated yearly, at least for the base analytics (the latest year vs previous year, and basic selections like “cause”, “only men”, “only women”, only specific ethnicity, etc.) you should pre-calculate analysis results (and thus you should create a separate script allowing that), and load pre-calculated data into UI, thus achieving fast performance for end user.

    You should also implement a “combined” report / view: once you have pre-calculated for each territory the spike / drop of incidents according to different queries, you can rapidly check for each territory the query which resulted in the largest spike of cases, and color that territory according to that spike.

Scoring

This challenge will be scored according to the standard code without unit-tests challenge scorecard. The major requirement is the overall implementation of the described functionality. Under the minor requirements the reviewers should score for specific narrow issues in your solution.



Final Submission Guidelines

Submit updated codebase. Don’t forget to update the documentation as needed. You may include any comments to reviewers, which may help with the review, as a separate document outside the main codebase.

Payments

Topcoder will compensate members in accordance with our standard payment policies, unless otherwise specified in this challenge. For information on payment policies, setting up your profile to receive payments, and general payment questions, please refer to ‌Payment Policies and Instructions.

ELIGIBLE EVENTS:

2021 Topcoder(R) Open

REVIEW STYLE:

Final Review:

Community Review Board
?

Approval:

User Sign-Off
?

ID: 30150029