

DataView Decorator Requirements Specification

1. Scope

1.1 Overview
Quite often, reporting applications require a result set of raw data as well as a set of extra
information and behavior to fully describe and use the data. This component provides a simple
and robust interface to associate both related information and necessary behavior directly to a
result set instance.

This component is intended entirely as added functionality around a retrieval mechanism; it is not
intended to affect any update logic.

1.2 Logic Requirements

1.2.1 Compatibility
The component must be compatible with the .NET DataView.

1.2.2 Result Set Expiration
One key piece of data is result set expiration. Many result sets have a limited life-time; pricing,
scores, rankings, and other such data have a limited usable lifetime. By directly associating an
expiration date with the result set, cache, user presentation, and other operations become simpler
to manage.

The expiration date generation process must be arbitrary. The component must support fixed
time (configurable length from creation) expiration directly, but must allow for other algorithms
(potentially data dependant).

1.2.3 Data Association
The component must be capable of associating arbitrary data to the result set at the set, row, and
column levels.

1.2.3.1 Set Associated Data
The only explicitly required set-level data are the criteria used to generate this result set. The
format of this data is up to the designer. At minimum, the criteria stored must be capable of
recreating a SQL style WHERE clause. The intention of this requirement, however, is to ease
presentation to the user (e.g. “These are the filters used to create this table: …”).

1.2.4 Behavior Association
The component must allow the retrieval of cells to be altered by an arbitrary ordered list of
behaviors. This altered cell retrieval should be optional; raw data must still be available. The
only strictly required behavior is cell-mapping, described in 1.2.4.1.

The designer is responsible for the general behavior interface.

1.2.4.1 Mapping
For this release of the component, there is one critical behavior: mapping. The component must
provide an interface to allow each cell to be mapped from its “raw” value to a new value. There
should not be a limitation on the source and destination types; for example, it should be possible
to map an integer to a string, or a string to an integer.

Map miss behavior (source value not mapped) is up to the discretion of the designer.

As an example, the user might come up with 3 mappings from the raw value:

Confidential ©TopCoder Software, Inc. 2003 Page 1

Message Type -> Importance Ranking
Importance Ranking -> Status Ranking
Status Ranking -> Status Name

The user should be able to create one behavior that aggregates all mappings, or a behavior for
each mapping. The chain of behaviors should start with the raw value from the table, and each
subsequent behavior should take the output from the previous behavior as its input.

1.3 Required Algorithms
No specific algorithms are required.

1.4 Example of the Software Usage
A simple reporting application caches result sets for 30 minutes after retrieval. These results may
be output to a web page, or to an Excel document. Both formats indicate the filters used to
generate the results. Further, certain columns (e.g. item type) need to be mapped from an
integer to a string value.

1.5 Future Component Direction
Future direction may include more native behaviors such as formatting or filtering.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
No GUI required.

2.1.2 External Interfaces
The component does not need to literally use the Decorator design pattern. However, the full
functionality of the DataView must be retained and available to consumers.

2.1.3 Environment Requirements
• Development language: C#

2.1.4 Namespace
TopCoder.Sql.DataViewDecorator

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
• The fixed length expiration period must be set through configuration, as well as through the

component API.

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
None.

3.2.2 TopCoder Software Component Dependencies:
• Configuration Manager

**Please review the TopCoder Software component catalog for existing components that can be
used in the design.

3.2.3 Third Party Component, Library, or Product Dependencies:
.NET Framework 1.1

Confidential ©TopCoder Software, Inc. 2003 Page 2

http://www.topcodersoftware.com/pages/c_showroom.jsp

3.2.4 QA Environment:

• Windows 2000
• Windows Server 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation
XML documentation must provide sufficient information regarding component design and usage.

Confidential ©TopCoder Software, Inc. 2003 Page 3

	DataView Decorator Requirements Specification
	Scope
	Overview
	Logic Requirements
	Compatibility
	Result Set Expiration
	Data Association
	Set Associated Data

	Behavior Association
	Mapping

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Namespace

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

