

Distributed Protocol Factory 2.0b Requirements Specification

1. Scope

1.1 Overview
This enhancement adds a Bridge Node capability. A bridge Node allows the creation of more complex
Node networks by allowing communications between separate Node Groups. A Bridge Node bridges two
or more otherwise unconnected groups. A bridge node will receive messages from its primary group, and
retransmit the messages to the nodes belonging to its sub-group.

1.2 Logic Requirements

1.2.1 Bridge Node
The Bridge Node will bridge message communications between two or more Node Groups.
A Node Group is a logical grouping of nodes identified as belonging together. All nodes in a Node Group
will be on the same physical subnet. A physical subnet may have multiple Node Groups on it.
The designation primary and secondary are based on which Group originates the message traffic. The
Group from which the initial message is generated (including a message initiated by the bridge node
itself) is designated the Primary Group. The Secondary Group(s) is(are) the Groups from where the
message did not originate from.
For any one message flow there can be only one Primary Group.
There may be one or more Secondary Groups.

1.2.2 Masked Mode Node
In Masked Mode, nodes in separate Groups are not aware of each other. The Bridge Node will
acknowledge its own message receipt on the Primary Group.
The nodes on each Secondary Group will act as a separate node network for message acknowledgement
purposes.
Assuming all Nodes on the Primary Group acknowledge, then the Bridge Node must acknowledge the
message, regardless of whether any Secondary Groups do not acknowledge the message.
If the Nodes on the Primary Group do not acknowledge the message, but one or more Secondary Groups
all acknowledge the message, then the Bridge Node must acknowledge the message.
It will be up to the application to determine course of action when a message is acknowledged in one
Group but not the other.

1.2.3 UnMasked Mode Node
In Unmasked Mode, nodes on separate Groups are not directly aware of each other.
A Bridge Node will only acknowledge receipt of a message from the Primary Group if all nodes in its
Secondary Groups also acknowledge receipt of the message.

1.2.4 Multiple Mode subnets
The bridge and non-bridge nodes must be able to operate in a highly complex, Multiple Mode Group
environments.
A Multiple Mode Group environment is where a Group may have a Bridge Node working in Masked Mode
with one Group, and another Bridge Node working in Unmasked Mode with another Group. Groups may
be chained (A to B to C to D etc.). Section 1.2.5 provides rules to, in most cases, prevent infinite
transmission loops; ultimately, however, it is up to the application owner and not the component to ensure
infinite loops do not occur.
A Node may participate in multiple Groups.
Message traffic sequence integrity will be maintained at the subnet level only.

Confidential ©TopCoder Software, Inc. 2002 Page 1

1.2.5 Multiplicity
A Node may not appear more than once in a Node Group.
A Bridge Node will not retransmit a received message it itself originated.
A non-bridge Node that belongs to more than on Node Group and that originates a message must do so
separately and independently for each Node Group it belongs to.

1.3 Required Algorithms
None.

1.4 Example of the Software Usage
When the node network grows very large it may become inefficient and time consuming to communicate
with all nodes at once. A Bridge Node allows breaking down a large node network into multiple smaller
node networks to better manage message flow. A Masked Mode Bride Node further allows semi-
independent connected node networks to share messages but operate independently.

1.5 Future Component Direction
None identified.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None.

2.1.2 External Interfaces
None.

2.1.3 Environment Requirements
• Development language: Java 1.4
• Compile target: Java 1.4
• Multiple runtime environments

o WebLogic
o JBoss
o JVM 1.4

• It is not guaranteed that the component will be running inside a J2EE container, but the J2EE
jar will be accessible.

2.1.4 Package Structure
TopCoder.Network.Synchronization.Bridged

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the component need to be configurable?
The protocol implementation should be configurable programmatically.

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
As determined by design.

Confidential ©TopCoder Software, Inc. 2002 Page 2

3.2.2 TopCoder Software Component Dependencies:
None. (Do not use configuration manager, directly or indirectly.)

Component does not need to use base exception (but can at designers discretion) because Java 1.4
supports chained exceptions natively.

3.2.3 Third Party Component, Library, or Product Dependencies:
None.

3.2.4 QA Environment:
• Solaris 7
• RedHat Linux 7.1
• Windows 2000
• Windows 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation
• Design documents must clearly define intended component usage in the ‘Documentation’ tab

of Poseidon.

Confidential ©TopCoder Software, Inc. 2002 Page 3

	Distributed Protocol Factory 2.0b Requirements Specification
	Scope
	Overview
	Logic Requirements
	Bridge Node
	Masked Mode Node
	UnMasked Mode Node
	Multiple Mode subnets
	Multiplicity

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Package Structure

	Software Requirements
	Administration Requirements
	What elements of the component need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

