
Idempotency Manager 1.0 Component Specification

1. Design

The Idempotency Manager is responsible for managing server responses to possibly
redundant client requests. The component keeps track of requests as they are received and
remembers the response generated by the server. If a duplicate request is received, the
Idempotency Manager simply provides the previously stored response.

 All the functionality of the component is provided with the IdempotencyManager. There
are typically four types operations:
¾ Claiming a request has arrived. The client will be notified of the elapsed time from the last

request activity with the same identifier, and whether there is a response available in the
persistence so that the client could retrieve it without ever processing the request.

¾ Retrieve a response associated with the request. There are a number of ways to do this.
Even if the response is not available at that point, the client could still choose to wait for it
synchronously or asynchronously.

¾ Store a response in association with a request. When the client has processed a request
and would wish to store it for future reference or reference from the peers, they could store
the response to persistence.

¾ Various cache management functionalities. These functionalities includes, drop entry,
clear the whole cache, shrink cache size to entry count or last activity date, purge
persistence to synchronize with the cache, save cache image to persistence or load cache
image from persistence.

The cache is supported with Distributed Simple Cache, with request identifiers mapping

to cache entries that include information about last activity time and whether the response exists
in persistence.

The component defines a simple request and response objects. These are light-weight
representation of the real request and response at client domain.

In order to maximize flexibility most of the functionality on IdempotencyManager is
refactored out to allow pluggable implementation. These interfaces include:
¾ IResponsePersitence that handles the persistence of the response objects.
¾ ICachePersistence that handles the persistence of the cache image.
¾ ICacheManagement that handles some high-level management of the cache.
¾ ICacheStrategy that handles the strategy to decide whether a request will be processed.
¾ IActivityLogger that handles the logging of IdempotencyManager activities.

With these responsibilities factored out, the component is quite clear in structure and claims
maximum flexibility.

1.1 Design Patterns
¾ Singleton:

IdempotencyManager implements singleton pattern to provide a global entry
point. There is no need to run two instances of the manager.

¾ Façade:

IdempotencyManager implements the façade pattern to centralize various
features. Client will only need to use this class to access all the functionalities.

¾ Strategy:

IdempotencyManager allows custom implementation of persistence, logging,
cache management and caching decision to be pluggable.

¾ Decorator:

CachedResponsePersistence implements the decorator pattern to facilitate
re-usable caching with any IResponsePersistence implementation.

¾ Composite

ActivityBroadcaster implements the composite pattern to allow activity
notification to be sent to multiple loggers.

1.2 Industry Standards
None

1.3 Required Algorithms
Most of the methods in the component is straight-forward in nature. Those with

some level of complexity have implementation notes in Poseidon documentation.

1.3.1 DatabasePersistence Table Schemas
This Table Schema works for SQL Server.

DROP TABLE response;
DROP TABLE cache_image;

-- the response table has entries for the responses in association with requests

CREATE TABLE response (
 identifier VARCHAR(255) NOT NULL,

-- the request identifier
 security_key VARCHAR(255) NOT NULL,
 -- the request security key
 response_object IMAGE NOT NULL,
 -- the response object in binary form
 time_stamp DATETIME NOT NULL,
 -- the time at which the response is created
 life_time BIGINT NOT NULL
 -- the intended life time of the response
);

-- the cache_image table has entries for each cache entry

CREATE TABLE cache_image (
 identifier VARCHAR(255) NOT NULL,

 -- the request identifier
 last_activity DATETIME NOT NULL,

-- the last activity of any request with the identifier
 in_storage BIT NOT NULL

-- whether at least one response exists for the request
);

1.3.2 Transaction Requirements
It is required that all database operations that is not atomic be wrapped into a

transaction. Specifically, the following methods will be transactioned:
¾ DatabasePersistence.Store(request, response)
¾ DatabasePersistence.SaveCache(cache)

1.3.3 Locking Schemas
This component is implemented with concurrency handling and a number of

entities require explicit locking. It is a bit hard to sum up in the Poseidon documentation
so I am reiterating here.

¾ Request: all operations accessing the attribute set will lock on attributes.
¾ ActivityStatistics: all operations performed on a certain collection will lock on that

collection (receiveCounts, storeCounts, retrieveCounts).
¾ CachedResponsePersistence: all operations lock on instance.
¾ DatabasePersistence: all operations lock on connection. A few operations need to

implement transaction.
¾ FileSystemCachePersistence: no locking but should open the file with appropriate

share mode.
¾ IdempotencyManager: all operations on the cache should lock the cache.

Operations on the callbackList should lock the list. Operations accessing either one
of the instance variables should lock the instance.

1.3.4 Callback Polling
Due to the limitation of Distributed Simple Cache, we are not notified if a cache

update occurs remotely (and writes into the local cache). The workaround is explicit
polling. There are two places in the component that uses this polling. One is in the
RetrieveResponse() with a timeout value. It will poll the cache with an interval of 100ms
until it timeouts. The second is the manager level polling on the callbackList to handle all
the registered callbacks. This polling interval is configurable. CallbackEntry forms up the
callbackList. This class is marked package. All the polling could be replaced when the
DSC notification version is in, without affecting the public API.

1.4 Component Class Overview
Only overview is provided here. Refer to Poseidon for detailed documentation.

1.4.1 TopCoder.Util.Idempotency

¾ IdempotencyManager:

 This is the main class of the component, which centralizes all the functionality the
client will need to access. It’s a singleton. There are a number of interfaces defined
where custom logic could be plugged into.

¾ Request:

 This is a light-weight request representation that the component works with. It
defines request identifier, security key, request type and an attribute set.

¾ Response:

 This is the response the component stores in association with request. The
response contains a serializable response object, a creation timestamp and an expected
life. However the IdempotencyManager itself does not interpret these metrics.

¾ ResponseAvailableCallback:

 This is the delegate used for clients that wish to be notified when a certain
response is available. Client registers callback with a request.

¾ CacheEntry:

 This simple data structure is used in the cache to help identify whether a request
has arrived before and whether response is available in the persistence. This entry is
serializable in order to distribute around the idempotency peers.

¾ CallbackEntry:

 This is used to keep all the callbacks registered with the IdempotencyManager.

¾ ICacheManagement:

 This interface defines some cache management functionality and allows for
custom implementation. GenericCacheManagement is its pre-packaged implementation.

¾ GenericCacheManagement:

 This implementation of ICacheManagement provides functionality to shrink a
cache according to entry number of activity date, and to purge the persistence to
synchronize with the cache content.

1.4.2 TopCoder.Util.Idempotency.Persistence

¾ IResponsePersistence:

 This interface defines the persistence contract for response instances.
CachedResponsePersistence and DatabasePersistence are its pre-packaged
implementations.

¾ ICachePersistence:

 This interface defines the persistence contract for cache image.
DatabasePersistence and FileSystemCachePersistence are its pre-packaged
implementations.

¾ CachedResponsePersistence:

 This implementation of IResponsePersistence uses a Distributed Simple Cache
to cache the responses among the idempotency group. It can serve as standalone in-
memory persistence or a caching persistence for another persistence implementation.

¾ DatabasePersistence:

 This class implements both IResponsePersistence and ICachePersistence with
database as backup.

¾ FileSystemCachePersistence:

 This implementation of ICacheResponse uses file system to save cache image to
or load cache image from.

1.4.3 TopCoder.Util.Idempotency.Strategy

¾ ICacheStrategy:

 ICacheStrategy interface defines the strategy for the IdempotencyManager to
decide whether to work with given request. TypeMappingCacheStrategy is its pre-
packaged implementation.

¾ TypeMappingCacheStrategy:

 This is an ICacheStrategy that maps request types to CacheDecision’s. If the
request type is not specified, a default decision will be adopted.

¾ CacheDecision:

 This is an enumeration used by TypeMappingCacheStrategy and
RuleListCacheStrategy. The CacheDecision has three values – Accept, Deny, and
Default.

1.4.4 TopCoder.Util.Idempotency.Loggr

¾ IActivityLogger:

 This interface defines a callback that will be notified for various activities of
IdempotencyManager. ActivityLogging and ActivityStatistics are the pre-packaged
implementations.

¾ ActivityLogging:

 This IActivityLogger implementation uses Logging Wrapper to log the activities.

¾ ActivityStatistics:

 This IActivityLogger implementation uses in-memory tables to bring up statistics
about the requests.

¾ ActivityBroadcaster

This IActivityLogger implementation allows a number of loggers aggregated into

one and receive notifications from one manager source.

1.5 Component Exception Definitions

1.5.1 Custom Exceptions:

¾ PersistenceException:

 This exception is generally used for the ICachePersistence and
IResponsePeresistence interface if the underlying media fails for any reason. Logic errors
will not lead to this exception. For all the method that uses the persistence
implementation directly or indirectly, this exception is usually propagated.

¾ ResponseRetrievalException:

This exception is used when there is no response available in the persistence

that matches both the request identifier and the security key. Usually the client will make
sure if a response exists with HasResponse() on the IdempotencyManager, so
ResponseRetrievalException could be interpreted as a kind of unauthorized access.

1.5.2 Foreign Component Exceptions:

¾ InvalidConfigFileException:

 This exception is used for all the constructors that loads configuration from
Configuration Manager. If some required property does not exist, or invalid property value
is specified, the exception will be thrown since there is no way to properly instantiate the
entity in question.

1.5.3 System Exceptions:

¾ ArgumentNullException:

 This exception is thrown in all the places that do not allow for null arguments.

¾ ArgumentException:

 This exception is thrown in all places where invalid argument is received,
including empty string, negative count or time interval, etc.

1.6 Thread Safety
Thread safety is important for this component. The component will be used to

reduce duplicate process for services and will be mostly typically used in multi-threaded
environment.

All the data structures are either immutable by nature or will be manipulated
thread-safely with proper locking. The ICachePersistence, IResponsePersistence,
IActivityLogger implementations are all implemented with thread-safety in mind. The
ICacheManagement and ICacheStrategy implementations are stateless and support
concurrency in nature. The IdempotencyManager itself uses locking schemas to ensure
thread-safety. Refer to the algorithm section for more details.

The dependency components Distributed Simple Cache, Configuration Manager,
Connection Factory and Logging Wrapper are all thread-safe. Linked List is not thread-
safe and will be used with explicit locking.

It is required that any pluggable implementations of the various interfaces to be
thread-safe to work with IdempotencyManager.

2. Environment Requirements
2.1 Environment

.NET Framework 1.0

2.2 TopCoder Software Components

¾ Distributed Simple Cache 1.1
Distributed Simple Cache supports a group of caches to synchronize over

networking. The component defines an IDistributedSimpleCache interface that
provides the functionality of a common cache. And client could use this cache without
ever notice any underlying traffic.

¾ Configuration Manager 1.0
Configuration Manager provides a centralized way for the component to manage

its configuration properties. Configuration is used for seven entities in the component
and in order for the IdempotencyManager to start up on itself, configuration should be
preloaded. The component will generally use ConfigManager.GetValue()/GetValues()
to load properties as strings.

¾ Connection Factory 1.0
Connection Factory takes the actual connection creation logic out of the

component. With this the connection is fully configurable outside the component. The
DatabasePersistence uses ConnectionManager.CreatePredefinedDbConnection() to
create the connection to the database.

¾ Logging Wrapper 1.0
Logging Wrapper provides pluggable log support for the component. It is used in

the ActivityLogging implementation of IActivityLogger. The Logging Wrapper
component should be initialized prior to use. The actual logging will be performed
with LogManager.Log().

¾ Linked List 1.0
Linked List provides custom implementation of the linked list collection which is

not available in the .NET collection framework. The callback list in the
IdempotencyManager is maintained as a linked list so that entries can be removed
with constant complexity.

2.3 Third Party Components
This component does not depend on any third party components. Logging

Wrapper might need log4net to run if the client chooses to use this implementation for the
underlying logging.

3. Installation and Configuration
3.1 Package Name

TopCoder.Util.Idempotency

 TopCoder.Util.Idempotency.Persistence

 TopCoder.Util.Idempotency.Strategy

 TopCoder.Util.Idempotency.Logger

3.2 Configuration Parameters
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ConfigManager SYSTEM "cm.dtd">

<ConfigManager>

 <namespace name="TopCoder.Util.Idempotency.Strategy.TypeMappingCacheStrategy">

 <!-- a list of known request types -->

 <property name="known_types">

 <value>GET</value>

 <value>POST</value>

 </property>

 <!-- the cache decision for the type GET -->

 <property name="GET_decision">

 <value>Accept</value>

 </property>

 <!-- the cache decision for the type POST -->

 <property name="POST_decision">

 <value>Deny</value>

 </property>

 <!-- the default cache decision if the request type is unknown -->

 <property name="default">

 <value>Accept</value>

 </property>

 </namespace>

 <namespace name="TopCoder.Util.Idempotency.Logger.ActivityLogging">

 <!-- the logging format for a request – identifier, security key, type and time in that order -->

 <property name="format">

 <value>req {0} with key {1} of type {2} at {3}</value>

 </property>

 <!-- whether to log the security key -->

 <property name="log_security_key">

 <value>true</value>

 </property>

 </namespace>

 <namespace name="TopCoder.Util.Idempotency.Logger.ActivityBroadcaster">

 <!-- a list of activity loggers to broadcast to -->

 <property name="activity_loggers">

 <value>TopCoder.Util.Idempotency.Logger.ActivityLogging</value>

 <value>TopCoder.Util.Idempotency.Logger.ActivityStatistics</value>

 </property>

 </namespace>

 <namespace name="TopCoder.Util.Idempotency.Persistence.CachedResponsePersistence">

 <!-- the cache url for the distributed simple cache -->

 <property name="cache_url">

 <value>http://localhost:14701/cachedpersistence</value>

 </property>

 <!-- the start url for the distributed simple cache -->

 <property name="start_url">

 <value>http://192.168.1.156:14701/cachedpersistence</value>

 </property>

 <!-- the inner persistence for caching -->

 <property name="response_persistence">

 <value>TopCoder.Util.Idempotency.Persistence.DatabasePersistence</value>

 </property>

 </namespace>

 <namespace name="TopCoder.Util.Idempotency.Persistence.DatabasePersistence">

 <!-- the predefined connection defined in connection factory -->

 <property name="predefined_connection">

 <value>idempotency</value>

 </property>

 </namespace>

 <namespace name="TopCoder.Util.Idempotency.Persistence.FileSystemCachePersistence">

 <!-- the filename for persistence the cache image -->

 <property name="filename">

 <value>/etc/idempotency/cache.image</value>

 </property>

 </namespace>

 <namespace name="TopCoder.Util.Idempotency.IdempotencyManager">

 <!-- the cache url for the distributed simple cache -->

 <property name="cache_url">

 <value>http://localhost:14700/idempotency</value>

 </property>

 <!-- the start url for the distributed simple cache -->

 <property name="start_url">

 <value>http://192.168.1.156:14700/idempotency</value>

 </property>

 <!-- the cache management implementation to use -->

 <property name="cache_management">

 <value>TopCoder.Util.Idempotency.GenericCacheManagement</value>

 </property>

 <!-- the cache strategy implementation to use -->

 <property name="cache_strategy">

 <value>TopCoder.Util.Idempotency.Strategy.TypeMappingCacheStrategy</value>

 </property>

 <!-- the cache persistence implementation to use -->

 <property name="cache_persistence">

 <value>TopCoder.Util.Idempotency.Persistence.DatabasePersistence</value>

 </property>

 <!-- the response persistence implementation to use -->

 <property name="response_persistence">

 <value>TopCoder.Util.Idempotency.Persistence.CachedResponsePersistence</value>

 </property>

 <!-- the activity logger implementation to use -->

 <property name="activity_logger">

 <value> TopCoder.Util.Idempotency.Logger.ActivityBroadcaster</value>

 </property>

 <!-- the polling interval for the background thread handling callback list -->

 <property name="polling_interval">

 <value>5000</value>

 </property>

 </namespace>

</ConfigManager>

3.3 Dependencies Configuration
Dependency configuration is required for Configuration Manager (which requires

a preload list), Connection Factory and Distributed Simple Cache. Logging Wrapper
potentially needs configuration for log4net. Please refer to the respective documentation
for sample configuration.

4. Usage Notes
4.1 Required steps to test the component

• Extract the component distribution.

• Follow Dependencies Configuration.

• Execute ‘nant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component
None

4.3 Demo

// Get Idempotency Manager
IdempotencyManager manager = IdempotencyManager.Instance;

// New request arrives
Request request = new Request("/importal/readme.txt", "", "GET");
DateTime elapsed = manager.RequestArrival(request);
bool exists = manager.HasResponse(request);

// Retrieve response
Response response = manager.RetrieveResponse(request, TimeSpan.FromSeconds(5));
manager.RetrieveResponse(request,

new ResponseAvailableCallback.ResponseAvailable(ResponseHandler),
TimeSpan.FromMinutes(10));

// Store response
response = new Response("hello world", DateTime.Now, TimeSpan.FromDays(1));
manager.StoreResponse(request, response);

// Manage pluggable sources
DatabasePersistence persistence = new DatabasePersistence(new SqlConnection(@"..."));
manager.ResponsePersistence = persistence;
manager.CachePersistence = persistence;
manager.CacheStrategy = new TypeMappingStrategy();
manager.CacheManagement = new GenericCacheManagement();
manager.ActivityLogger = new ActivityStatistics();

// Manage cache
manager.DropEntry("/importal/readme.txt");
manager.ClearCache();
manager.ShrinkCacheToSize(50);
manager.ShrinkCacheToDate(DateTime.Now - TimeSpan.FromDays(5));
manager.PurgeResponsePersistence();

manager.SaveCache();
manager.LoadCache();

5. Future Enhancements
The most pressing issue naturally to replace the polling mechanism for notifying

mechanism. This will only be feasible once the Distributed Simple Cache is updated. Another
obvious direction is to provide more custom implementations for various interfaces. Utilities could
be developed to normalize real request into light-weight request and magnify light-weight
response back into real response.

	Idempotency Manager 1.0 Component Specification
	Design
	Design Patterns
	Industry Standards
	Required Algorithms
	DatabasePersistence Table Schemas
	Transaction Requirements
	Locking Schemas
	Callback Polling

	Component Class Overview
	TopCoder.Util.Idempotency
	TopCoder.Util.Idempotency.Persistence
	TopCoder.Util.Idempotency.Strategy
	TopCoder.Util.Idempotency.Loggr

	Component Exception Definitions
	Custom Exceptions:
	Foreign Component Exceptions:
	System Exceptions:

	Thread Safety

	Environment Requirements
	Environment
	TopCoder Software Components
	Third Party Components

	Installation and Configuration
	Package Name
	Configuration Parameters
	Dependencies Configuration

	Usage Notes
	Required steps to test the component
	Required steps to use the component
	Demo

	Future Enhancements

