
[TOPCODER]
SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 1

Idempotency Manager Requirements Specification

1. Scope

1.1 Overview
The Idempotency Manager is responsible for managing server responses to possibly redundant
client requests. The component keeps track of requests as they are received and remembers the
response generated by the server. If a duplicate request is received, the Idempotency Manager
simply provides the previously stored response.

1.2 Logic Requirements

1.2.1 Redundant Request Detection
When a request is received by an application, it will first pass a lightweight representation of the
request to the Idempotency Manager to determine if the request has already been received. If
the request has previously been received, the Idempotency Manager will return two pieces of
information: 1) Time elapsed since the request was last received (before now) and 2) Whether or
not there is a corresponding response stored for the request. It is possible that there may not be
a corresponding response stored for the request even if the component determines the request
was previously received. This is because the application may still be processing the original
request.

When the application performs this request to the component, the component recognizes that an
instance of the specified request has been received; it caches the lightweight representation of
the request if it does not already exist and updates related information (last time request was
received is set to now).

1.2.2 Response Storage
The component provides a means to persist responses to permanent or temporary storage. The
actual type of storage used is configurable. The Idempotency Manager comes prepackaged with
an in-memory storage implementation which uses the Simple Cache component.

When an application wishes to store a response, it will provide the component with two things: 1)
A lightweight representation of the request and 2) The actual response. The Idempotency
Manager will store the response and will cache the lightweight representation of the request using
the Distributed Simple Cache component. Caching the lightweight representation of the request
guarantees speedy redundant request detection, because it removes the need to go to the
potentially slower storage implementation.

1.2.3 Response Retrieval
The component provides a means to retrieve responses from storage. The actual type of storage
used is configurable. The Idempotency Manager comes prepackaged with an in-memory storage
implementation which uses the Simple Cache component.

When an application wishes to retrieve a response, it will provide the component with the
lightweight representation of the request. The Idempotency Manager will retrieve the response
and return it to the application. If the request/response pair does not exist, an error will occur.

1.2.4 Wait for Response
It is possible that a redundant request could be received and that there is not yet a corresponding

[TOPCODER]
SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 2

response available. If this is the case, the application may choose to wait for the response. The
Idempotency Manager provides a method to wait for a response to a given request.

When an application wishes to wait for a response, it will provide the component with the
lightweight representation of the request. The application may optionally provide a timeout value,
after which the thread should be allowed to continue without waiting further.

1.2.5 Response Notification
It is possible that a redundant request could be received and that there is not yet a corresponding
response available. If this is the case, the application may choose to wait request notification
when a response becomes available. The Idempotency Manager provides a method to add a
listener for a particular response.

When an application wishes to receive notification of a response, it will provide the component
with the lightweight representation of the request and a listener object .

1.2.6 Special Request Type Handling
The Idempotency Manager can be configured to handle a set of request types differently than
other requests. This is accomplished by specifying a ‘request type list’ of request types. Request
types appearing in the request type list may be configured to have idempotency management
enabled or disabled for that particular request type. If idempotency management is disabled for
the request, it will not notify the application of redundant requests during 1.2.1 Redundant
Request Detection.

If a request is received of a type that is not in the request type list, the component will use a
configurable default setting of enabled or disabled idempotency management (the component
may also be configured to generate an error in this case).

1.2.7 Lightweight Request Representation
Requests represented in a lightweight fashion must have the following attributes:

• Primary Identifier
Each request must have exactly one primary identifier (String). The primary identifier is used
to uniquely identify a request during 1.2.1 Redundant Request Detection and 1.2.4 Wait for
Response. Two requests are considered equal if they their primary identifiers are equal.

• Secondary Identifier
Each request may have an optional secondary identifier (String). The secondary identifier is
used in combination with the primary identifier to uniquely identify a request during 1.2.2
Request/Response Storage and 1.2.3 Request Response Retrieval. Two requests are
considered equal if their primary and secondary identifiers are equal.

• Request Type
Each request must have exactly one request type (String).

1.2.8 Cache Persistence
The component provides a means to persist the current cache to the file system. The application
may later choose to load all elements from the persisted cache-file in to the current cache.

When the application wishes to persist the current cache to the file system, it provides the
Idempotency Manager with a file location to which the cache should be written. The component
will attempt to write the cache to the specified location. If the component cannot successfully

[TOPCODER]

None.

SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 3

write the cache to the file, an error will occur.

When the application wishes to retrieve a cache-file from the file system, it provides the
Idempotency Manager with the location of the file to be loaded. The component will attempt to
read the file and load the requested data in to the cache. If the component cannot successfully
read from the file or load the data in to the cache, an error will occur.

1.2.9 Cache Management
The component provides a means to manage the size of the stored cache. At any time, the
application may choose to: 1) Clear the entire cache, 2) Clear all requests from the cache that are
older than a specified age or 3) Clear requests from the cache (starting with the oldest requests)
to limit the size of the cache to a specified size.

The component may be configured to automatically manage using a pluggable cache
management implementation. The Idempotency Manager comes prepackaged with an
implementation that can be configured to manage the cache by either: 1) Clearing requests from
the cache that are older than a specified age or 2) Clearing request from the cache (starting with
the oldest requests) to keep the size of the cache under a specified maximum size.

1.2.10 Thread-Safety and Performance
The component must be thread-safe. Performance is a primary concern with this component.
The act of checking for redundant requests (1.2.1) must be optimized for speed and accuracy.

1.2.11 Distributed Component
The Idempotency Management component is a distributed component. Two instances of the
component running on different servers must be able to share request and response data as if
they were running on a single machine.

1.3 Required Algorithms
None.

1.4 Example of the Software Usage
An eCommerce application driven by an XML Web Service might use this component to detect
and avoid processing redundant user requests, for example: clicking twice on the button that
charges the user’s credit card. The component might also be used to handle redundant requests
that may result from network connectivity issues.

1.5 Future Component Direction

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None.

2.1.2 External Interfaces
None.

[TOPCODER]
SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 4

2.1.3 Environment Requirements
• Development language: C#

2.1.4 Namespace
TopCoder.Util.Idempotency

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
• Request Type List

o Request Type – Enabled/Disabled
• Default Request Type – Enabled/Disabled
• Pluggable Storage Implementation
• Cache Management Implementation

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
None.

3.2.2 TopCoder Software Component Dependencies:
None.
**Please review the TopCoder Software component catalog for existing components that can be
used in the design.

3.2.3 Third Party Component, Library, or Product Dependencies:
None.

3.2.4 QA Environment:
• Windows 2000
• Windows Server 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation
XML documentation must provide sufficient information regarding component design and usage.

http://www.topcodersoftware.com/pages/c_showroom.jsp

	Idempotency Manager Requirements Specification
	Scope
	Overview
	Logic Requirements
	Redundant Request Detection
	Response Storage
	Response Retrieval
	Wait for Response
	Response Notification
	Special Request Type Handling
	Lightweight Request Representation
	Cache Persistence
	Cache Management
	Thread-Safety and Performance
	Distributed Component

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Namespace

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are required?
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

