
[TOPCODER]
SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 1

.NET Configuration Manager 2.0 Requirements Specification

1. Scope

1.1 Overview
.NET libraries do not currently support automatic loading of configuration data. In the instance of
a library dll used in numerous applications, adding additional configuration details to all of the
applications' configuration files is not optimal. The purpose of the Configuration Manager is to
centralize the management of, and access to, this data.

1.2 Logic Requirements

1.2.1 Remove the System-Wide Singleton
Security changes to remoting in the .NET Framework version 1.1 have broken the current
system-wide singleton implementation. The system-wide singleton should be replaced with a
normal singleton.

1.2.2 Extend the concept of “Config Files” to include other data sources.
The current plug-in architecture for this component only supports configuration sources which are
files. It is desirable to allow plug-ins for other data sources, such as a database (like the Java
Configuration Manager DB component.)
• It should be possible to load data from any combination of data sources into a common

configuration namespace.
• Existing configuration files should continue to work unmodified with the new Configuration

Manager, but the formats may be extended to support additional data sources.
• Preloading must continue to be handled as it is in the currently version: An application must

define a path to a preload configuration file under the
“TopCoder.Util.ConfigurationManager.Preload” key in its app.config file.

1.2.3 Improve the component interface.
Since this component is used in so many other components, it is important that the interface be
as simple and powerful as possible. The following are some common usage patterns for this
component which could be improved:

• Allow the developer to set parsing preferences such as if values should be trimmed before
processing, if null/empty values should be allowed, and if an exception should be thrown if a
property is requested that does not exist and/or is empty, etc. Different components within the
same application should be able to maintain their own preferences.

• Allow developers to easily retrieve properties as types other than string (such as bool, int,
double, Enum, etc.) An application should be able to request a parameter as a specific
datatype and the Configuration Manager should ensure that the property’s value is parsable
as that type before returning it (and then return it in a typesafe way, if possible.)

• A common usage of the Configuration Manager is to determine a runtime type of a
configurable object. To simplify this procedure, the component should be able to instantiate
objects based on the typename found in a configuration property. An application should be
able to specify a required base type or interface and the Configuration Manager will enforce
this type dependency when determining if the requested property is valid.

1.2.4 Retain API compatibility.
The new API must be backwards compatible with the 1.1 interface. Since API changes may be
useful in order to remain consistent with the new features in this version, compatibility may be
achieved by simply providing deprecated wrapper methods/classes for any parts of the API which

[TOPCODER]
SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 2

are provided simply for the sake of compatibility.
• Any classes or methods which remain in the design only for compatibility reasons should be

clearly marked as such in the design and annotated with the ObsoleteAttribute in the code.

1.2.5 Improve the Documentation.
Since this component is used in so many other components, it is critical that the “Installation and
Configuration” and “Usage Notes” sections of the component specification be clear, concise, and
correct. Reviewers must ensure that this documentation is sufficient to easily get the
Configuration Manager setup and usable for other components.

In addition, the documentation should STRONGLY SUGGEST that components which use the
Configuration Manager NOT hard-code their configuration namespaces. A default namespace
may be used, but it should be possible to change this default at runtime by passing a different
configuration namespace to that component at runtime. This should allow a component, such as
an updated version of the Logging Wrapper which may be used by several other components in
the same application, to use different configuration parameters each time it is used. (For
example, the database portion of an application may wish to log message directly to its database,
while the front-end portion of the application must log messages to a file. If both use the Logging
Wrapper, there must be a way for different configuration parameters to be specified for each
usage.)

1.3 Required Algorithms
None.

1.4 Example of the Software Usage
A library for sending emails requires configuring the SMTP server address and port. A web
application using this library does not want to configure these details in the web.xml.

1.5 Future Component Direction
In the future, additional plug-ins will be developed to support other sources of configuration data
such as a database or the .NET app.config file.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None.

2.1.2 External Interfaces
None specified.

2.1.3 Environment Requirements
• Development language: C#

2.1.4 Namespace
TopCoder.Util.ConfigurationManager

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
• None

[TOPCODER]
SOFTWARE

Confidential TopCoder Software, Inc. 2003 Page 3

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
None.

3.2.2 TopCoder Software Component Dependencies:
None.
**Please review the TopCoder Software component catalog for existing components that can be
used in the design.

3.2.3 Third Party Component, Library, or Product Dependencies:
None.

3.2.4 QA Environment:
• Windows 2000
• Windows Server 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation
XML documentation must provide sufficient information regarding component design and usage.

http://www.topcodersoftware.com/pages/c_showroom.jsp

	.NET Configuration Manager 2.0 Requirements Specification
	Scope
	Overview
	Logic Requirements
	Remove the System-Wide Singleton
	Extend the concept of “Config Files” to include o
	Improve the component interface.
	Retain API compatibility.
	Improve the Documentation.

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Namespace

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are required?
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

