
Genpact Email Classification

The solution will be based on PredictionIO. There will be multiple instances, one per client, 
each client having their own data. The number of categories in the classification and the 
categories themselves may vary by client.

The classifications are: AP processing errors, Audit request, Bank queries, Bank rejections, 
BMG, CBCP escalation, CBCP request, Claim status, Concur issues, Contract Related, Credit
Card Maintenance, FYI, GL requests/ PC uplifts, Invoice Status, Invoices for scan, JBA/SMF 
Maintenance, Manual payment request, Matching Report, Missing documents/ supporting 
documentation, Non AP documents Non PO Invoices (coding information, VAT), OIR, Open 
Item reports, Other, out of office messages, Payment confirmation, Payment reminder, 
Payments (MPR, urgent payment requests, BMG), PO related, Process updates, Proof of 
payment, Recall, Two Way match report, Urgent payment request, Vendor master data, 
Vendor statement, Web Ex Trainings.

Report

PredictionIO is an open source machine learning server. The company behind PredictionIO 
was acquired by Salesforce.

PredictionIO has some readily available templates for text classification. The official template 
will act as the base and will have to be customized for Genpact. The template uses Scala, but
the customization may be done in another language such as Java.

A web service will be created (as part of the customization of the PredictionIO classification 
template) for use by the Genpact clients.

PredictionIO will use any of PostgreSQL, MySQL, or Elasticsearch/HBase.

Software

Name: PredictionIO

Version: v0.9.6 (latest)

Estimated annual cost: None, since PredictionIO is open source.

Link to licensing information: https://docs.prediction.io

PredictionIO is licensed under the Apache License, Version 2.0. See 
https://github.com/PredictionIO/PredictionIO/blob/master/LICENSE.txt for the full license text.

https://github.com/PredictionIO/PredictionIO/blob/master/LICENSE.txt
https://docs.prediction.io/


Diagrams

Relationships between Salesforce Clients, Web Services (part of the solution), and the 
PredictionIO instances:

Diagram to show the Extraction Process and use of the Web Service:



Algorithms

Name: General Flow

Supervised Learning will be used to train the engine to classify emails.

General Pseudo-code:

1. Install and Run PredictionIO
2. Customize the Engine using the PredictionIO template
3. Data Collection and Training (feed the engine with combinations of email attributes with the
expected email classification)
4. Deploy the Engine as a Web Service
5. Use the Engine by Sending combinations of email attributes and getting the classification

Step 3 will have to be repeated if re-training the engine.

Name: Supervised Learning Using Naive Bayes

This is the default algorithm used by the PredictionIO template. Naive Bayes is commonly 
used for classifying emails on whether they are spam or not. In our case we will be using this 
algorithm for classification into different categories.

The Naive Bayes-based engine will predict the email classification based on email properties: 
"Sender Email", "To Email", "Subject", and "Html Body".

Naive Bayes Classification uses the existence and frequency of certain words in the text to 
classify the whole email into one of the several categories, taking into consideration that 
certain keywords are most probable to fall into certain categories.

PredictionIO mentions in their blog that they have more than 8000 developers and 400 apps 
using their platform. Being part of Salesforce, their solution will be used extensively with 
SalesforceIQ.

Name: Extraction and Use of the ID, System, Other ID, Sender Email, Count, To Email, and 
Subject

Since we will be using the web services exposed by the installation of our customized 
PredictionIO solutions, we need to convert incoming data to JSON. If we are given Excel files 
containing the email data, extraction into JSON should just be straightforward using an Excel 
library such as Apache POI (if using Java).

Name: Handling New Categories

Introduction of new Categories will require that our engine be re-trained.



Name: Handling New Variables

Introduction of new Variables will require that our engine be re-trained.

Name: Handling Classification Errors and Incorporating Feedback

Errors in classification will require that our engine be re-trained. The erroneously classified 
email should be used as part of the training set, along with the correct classification to expect.

Name: Handling Unknown Classifications

If our engine cannot come up with the classification for certain instances of data, this will 
require that our engine be re-trained. The unclassified email should be used as part of the 
training set, along with the correct classification to expect.

Other Information

Scalability: 

Since we will be using different instances for different clients, our solution must be more 
scalable as compared to using a monolithic solution to be shared by all clients. Should a 
single instance be not enough to service a certain client, we can scale our solution like how 
we would scale any web service. We can use a load balancing solution which uses several 
instances of a web service.

Degree of Scalability:

Since our solution is tiered and not monolithic, we can scale parts of the solution and not just 
do a wholesale replication of all components when we need to scale. If we are running low on 
storage we can scale only the backing store used (PostgreSQL/MySQL/Elasticsearch/HBase)
and leave the other components as is. If we just need more responders to requests we just 
add load-balanced services behind our load balancer and leave the other components as is 
(such as the backing stores).

Advantages and Disadvantages of Naive Bayes Classification:

 Performs well in avoiding false positives. Not just because an email contains the word 
“Invoice” will it be automatically classified as Invoice if it should really be classified in 
another category.

 Bayesian poisoning is used by spammers in their attempt to evade classification of 
their emails as spam, but it is probably unlikely that Genpact customers will use this 
technique to deliberately have their emails classified in the wrong category.



Accuracy:

Naive Bayes by itself can be very accurate in classification after training but several measures
can still be done to maintain high accuracy: 

1) train with a substantially large set of samples
2) deal with rare words
3) use additional heuristics such as ignoring certain words (the, a, an) and/or use a 
combination of words when classifying and not just individual words.

References:

Quick-start document on how to install, train, and use a classification engine: 
https://docs.prediction.io/templates/classification/quickstart

Using a different algorithm instead of Naive Bayes with PredictionIO:
https://docs.prediction.io/templates/classification/add-algorithm/

Naive Bayes classifier wiki: https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naive Bayes spam filtering wiki: https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://docs.prediction.io/templates/classification/add-algorithm/
https://docs.prediction.io/templates/classification/quickstart

