Solution based on a truly online machine learning
GENPACT EMAIL CLASSIFICATION IDEATION CONTEST STATEMENT

yedtoss
March 23, 2016

The client, ” Genpack” has a lot of emails that they need to classify into categories so that it
can be handled by the correct team. Right now, they are doing it manually. The objective of
the client for this contest is to perform an automatic email classification to avoid this manual
and time consuming process.

In the scientific literature, this is known as ”document categorization”, "text classifica-
tion”, ”email classification” or ”email foldering”. In this document, we described the general
techniques used by all standard state-of-the-art algorithms. We then proposed a specific al-
gorithm that can be used by the client together with some recommendations. Finally, we

presented software packages that can be used for the implementation.
1 General strategy for email classification

Figure 1: General email foldering strategy

Training set of text documents

Apply pre-processing
(remove stop-words, stemming, removing HTML
tags etc. )

Extract features
(using either TF-IDF, LSI, Multiword etc.)

Select appropriate Machine Learning model for
classification
(Naive Bayes, Decision Tree, Neural Network,
Support Vector Machine, Hybrid approach etc.)

Train classifier

Test classifier using trained model

Figure [I] presents the general technique used to perform email classification. We will describe below
the pre-processing, the features extraction as well as the classification steps.
1.1 Pre-Processing
In a first step, the emails need to be processed to remove any useless information. This includes different
processes explained below.
1.1.1 Tokenization

Tokenization is the process of breaking up a stream of text into words, symbols, or other meaningful
elements called tokens. In its basic form, token can be identified as whitespace separated words for



English. However, not every language separate words by space (e.g. Chinese, Japanese) and even for
English, white space alone is not sufficient. For this reason, it is recommended to use better algorithms
which are implemented in NLTK or Pattern [15] for example.

1.1.2 Stop Words Removal

Many of the most frequently used words in English (or other languages) are useless in Information
Retrieval (IR) and email categorization. Those words are called ”Stop words”. Stop-words, which are
language-specific functional words, are frequent words that carry no information. For example, it can
include pronouns, prepositions or conjunctions (”the”, 7of”, ”and”, "to” for example). One of the first
step during text categorization is to remove those words. One of the most complete list of stop words
for English and other languages is provided by Savoy [14].

1.1.3 Stemming

Stemming techniques are used to find out the root of a word. Behind stemming, the hypothesis is that
words with the same root mostly describe the same or relatively close concepts in text. For example,
the words ”user”, "users”, "used”, "using” can all be stemmed to the word "USE’. One of the most used
stemming algorithms for English is the Porter stemmer [10]. A list of stemmer implementations in C or
Java for various languages are provided by Savoy [14]. Also, an easy to use python implementation is

available in the NLTK module nltk.stem.snowball [1].

1.1.4 Lemmatization

Lemmatization has the same goal as stemming which is to convert words to their root forms. However,
they differ in the techniques used to achieve this conversion. Where stemming used an heuristic, lemma-
tization tries to do things properly with the use of a vocabulary and morphological analysis of words.
So, lemmatization leads to a better root although the algorithm is usually slower than a stemmer. For
example, the words “caring” and “cars” in English would be reduced to “car” in a stemming process
whereas in a lemmatization process they would be replaced by “care” and “car” respectively. To properly
work, a lemmatizer needs to know the context of the word. For example, if confronted with the word
”saw”, lemmatization would attempt to return either ”see” or "saw” depending on whether the use of
the token was as a verb or a noun. This context is provided by a process called part of speech tagging. A
lemmatizer for English is available in Spacy [2] and NLTK [I]. Others languages lemmatizer are available
in Pattern [I5] from CLIPS.

1.1.5 Part of Speech Tagging

A Part-Of-Speech Tagging is the process of marking up a word in a text as corresponding to a particular
part of speech, based on both its definition and its context. Examples of part of speech includes noun,
verb, adjective although generally computational applications use more fine-grained tags such as 'noun-
plural’. A Part of Speech Tagger for English is available in Spacy [2] and NLTK [I]. Others languages
tagger are available in Pattern [15] from CLIPS or Stanford Tagger [16].

1.2 Features Extraction

Once preprocessed, the email need to be converted to a vector representation called features. Most
text categorization algorithms used a Bag-of-words (BOW), Bag-n-grams or its derivatives (term fre-
quency—inverse document frequency aka tf-idf ...). In BOW, an email is represented by the count of his
words. Additionally, binary (presence/absence of a word from the vocabulary) is used. With BOW the
word order is lost. Even though bag-of-n-grams considers the word order in short context, it suffers from
data sparsity and high dimensionality. Bag-of-words and bag-of-n-grams have very little sense about the
semantics of the words or more formally the distances between the words. This means that words “pow-
erful,” “strong” and “Paris” are equally distant despite the fact that semantically, “powerful” should be
closer to “strong” than “Paris.”



This is why a better representation for documents called Paragraph Vector [§] have been derived. It’s
goal is to transform text of arbitrary length to a vector of fixed size such that two documents with the
same meaning or topics are closer according to a similarity measure called cosine distance.

1.3 Selecting a Classifier

Once the relevant features are extracted, a learning algorithm is applied to detect the category. Pop-
ular algorithms for text categorization are Support Vector Machines (SVM), Naives Bayes, K-Nearest
Neighbor . ... In the literature, SVM is believed to give generally the best performance. However, some
authors has pointed that if correctly tuned other algorithms will reach the same accuracy as SVM. The
issues with SVM is that it is computationally intensive, does not work well with imbalance class (when
there are more emails in one categories than others) and when the number of features increases. Fur-
thermore, it can’t handle feedback on classification errors without a full re-training. This is why online
classification methods have been developed. An online classifier is a method of machine learning which
updates his prediction as data come in a sequential order. One of the state-of-the-art online classifier is
the Exact Soft Confidence Weighed (SCW) [7] which beats SVM in many experiments.

1.3.1 Exact Soft Confidence Weighed (SCW [7])

SCW [7] classifier works by maintaining a multivariate Gaussian Distribution with a mean vector p and
a covariance matrix ¥ whose dimension is the number of features. After seeing one training example,
SCW will predict the category of this example. To Predict the category of an example of features z, a
weight vector w is drawn from the Gaussian Distribution. Then, the sign of the dot product between
w and x is returned for binary classification. For multi categories classification, we can use the One vs
One, One vs All or the Gibbs sampling proposed in [3].

2 Algorithm Description

For each email, the subject and the body of the messages will be used. All others fields such as sender,
receiver or attachments will be discarded. The following process should be done for the subject and body
merged. We will simply refer to the merged version as text.

2.1 Preprocessing
The preprocessing steps consist of the following:
1. Remove all HTML tags from the text using BeautifulSoup [13].

2. Detect the language of the text using langdetect [5]. All the remaining steps depends on the
language found.

3. Convert all foreign characters or words to that language into their canonical form or remove them.
4. Convert the text to lowercase if the language has the concept of lower and upper case.

5. Tokenize the text into a vector of words/tokens using its language as parameter. Do not change
the original order of the words using Pattern [15].

6. Perform Part of Speech tagging using the language and the vector of words using Pattern [15].
7. For each words in the vector convert it to its lemma using a Lemmatizer(e.g. Pattern [15]).

8. Remove stops words from the vectors and making sure the original order of words is kept using
NLTK [].



2.2 Features extraction

At the end of the preprocessing steps of section [2.1] we have a vector of words. We can transform it back
to a string or sentence.

Now, convert this sentence to a vector of fixed length using the ParagraphVector model with Gensim
[11] module gensim.models.doc2vec.Doc2Vec. Then, update the ParagraphVector model according to
section with Gensim function gensim.models.doc2vec.Doc2Vec.train.

2.3 Classification

At the end of the features extraction step described in section we have a vector of features. Classify
the text using the Exact Soft Confidence Weighed algorithm [7] and update it using this email. Now if
we receive immediately the true or reference category of this text, we can update our algorithm model
according to section However, in practice we might not have the feedback immediately due to the
fact that the user has not yet open the email or has not classified it. In this case, once we received the
feedback at a later time, we need to first re-classify the email and update the algorithm only in case of
error.

We recommend a custom implementation for this module with the L1-hinge loss, single constraint,
and diagonal matrix according to [7]. However an implementation is available in [12].

2.4 Updating the model and classifier

Note that we can update the ParagraphVector model without receiving any feedback because it does not
need to know about the (true) category of the text. Also, we don’t need the update of the Paragraph Vector
model or SCW classifier to complete before executing potential further steps needed to return a result
to the user. When updating SCW we only change the mean u and covariance Y is updated in case of
mis-classification according to Proposition 1 in Hoi et al. [7].

2.5 Pre-training the model and classifier

Although, the ParagraphVector model and SCW classifier can both be used without pre-training and
will learn as new emails are coming, we recommend to perform a one time large scale pre-training using
Gensim for the former. The input emails or documents need to be preprocessed according to section
and the features generated as explained in section This will allow the system to perform well from
the beginning.

2.6 Dealing with removed or new categories

The ParagraphVector model does not need any special treatment or any modification in case a new
category is added or removed because it is unsupervised and does not depend on categories. This is not
the case for the SCW classifier for which we propose the following solutions:

e When using the Gibbs sampling to handle multiclass classification, no changes is needed.

e When using the One vs One or One vs All to handle multiclass classification, train the added
models due to the new category or removed the obsolete models corresponding the the deleted
category.

e If the categories added or removed are significant behavioral changes in the classification of the
emails (For example, lot of previously classified emails will change categories) it is recommended to
completely re-train the classifier to get good results from the beginning of this significant change.

2.7 Dealing with multiple languages

Although, a single ParagraphVector model and SCW classifier can be used with no modifications on
different languages, we have not seen any use case in the literature. We believe that doing so, will



decrease the accuracy of the overall algorithm for each language. Our intuition is confirmed by some
works stating that the vector representation of a word using the ParagraphVector model in two different
languages are related by a linear combination However, practical experiments still need to be done to
infirm or confirm this intuition.

So at this stage, our recommendation is to use one ParagraphVector model and SCW classifier pair
for each languages. Each pair can be hosted on the same Salesforce.com instance belonging to a single
client.

2.8 Dealing with multiple clients

For the ParagraphVector model it is perfectly valid to use the same model for all clients. However we are
not sure whether or not using the same model will increase accuracy or decrease it. Indeed, using one
model per client will mean that the model will understand more about the jargon of this client which can
improve performance. However, by using the same model for all clients the Paragraph Vector will have a
larger training set which and c the jargon of other clients can also improve performance. Our intuition
here is to recommend using one Paragraph Vector model for all clients. We will even recommend to train
the ParagraphVector model on external data such as Wikipedia or publicly available emails collections.
This intuition is backed by the fact that most experiments on ParagraphVector model used a lot of
external training data. Again, practical experiments still need to be done to infirm or confirm this
intuition.

Due to the fact that each client can have different meaning for the categories or even completely
different categories, we recommend to use one SCW classifier per client.

2.9 Hosting the algorithm

There are two different possibilities of hosting the algorithm per client:

e Hosting the algorithm of each client on its Saleforce.com instance

e Hosting all algorithms on a mother Salesforce.com instance. Then, implement a REST API to
expose its functionality to hosts Saleforce.com instance for individual client.

2.10 Dealing with very long email messages

Although, the proposed algorithm will work just fine on a full long email with no penalty in speed, we
believe that classification accuracy can be improved by splitting the long emails into parts of fixed size
and classifying each part independently. The final classification can be a Majority Vote for example.
This intuition is inspired by the fact that some emails might be a multi-categories email where different
part belongs to different categories. Also, doing this would help with email containing text in multiple
languages.

2.11 Miscellaneous and Disadvantages

e The proposed algorithm ignores the possibility that emails can contain mistakes, misspelling errors
or abbreviations. It would be interesting to check if correcting the errors or abbreviations in an
email will improve the classification results or not.

e The proposed solution also ignores the To Field, From Field and other meta data available in
emails. It will be interesting to explore solutions to handle these fields in the classification using
for example the SIMOVERLAP and SIMSUBSET algorithms [6].

2.12 Scalability, Advantages and Past Uses cases

The two main algorithms used are the ParagraphVector model and SCW classifier.
The main advantages of ParagraphVector are:



e [t has been used by Google for classification and sentiment analysis with a huge accuracy improve-
ment over bag of words.

e It can be distributed.

e It has been trained with a database of gigabyte (Wikipedia) and is fast.

e It is an unsupervised algorithm which do not need labeled emails.

e It does not need to keep the whole documents in memory and is an online algorithm.

e All these can be verified in [8] and [4].

More descriptions are available in section
The main advantages of SCW classifier are:

e It has been used for text and emails categorization and show accuracy improvement over Support
Vector Machines.

e It is significantly faster and only keep a memory linear to the number of features and not the
number of documents

e All these can be verified in [7] and [9].

More descriptions are available in section

3 Software and Libraries

All

[15]7

the softwares we proposed are open source and are described in the references section. It is Pattern
Gensim [11], NLTK [I], BeautifulSoup [I3] and [5]. We also proposed some alternative implemen-

tations described in section [1l

References

1]

2]

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, 2009. URL http://www.nltk.org/. [Version 3.0, Apache 2.0 License].

SYLLOGISM CO. Spacy, Industrial strength NLP with Python and Cython. https://spacy.io/,
2015. [Version v0.100, License: MIT].

Koby Crammer, Mark Dredze, and Alex Kulesza. Multi-Class Confidence Weighted Algorithms. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages
496-504, Singapore, August 2009. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology-new/D/D09/D09-1052.bib.

Andrew M. Dai, Christopher Olah, and Quoc V. Le. Document embedding with paragraph vectors.
CoRR, abs/1507.07998, 2015. URL http://arxiv.org/abs/1507.07998.

Michal Danilak. langdetect. https://pypi.python.org/pypi/langdetect, 2015. [Version 1.0.5,
License: Apache v2].

Mark Dredze, Tessa Lau, and Nicholas Kushmerick. Automatically classifying emails into activities.
In IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pages
70-77, New York, NY, USA, 2006. ACM. ISBN 1-59593-287-9. doi: http://doi.acm.org/10.1145/
1111449.1111471. URL http://portal.acm.org/citation.cfm?id=1111449.1111471.

Steven C. H. Hoi, Jialei Wang, and Peilin Zhao. Exact soft confidence-weighted learning. In
ICML. icml.cc / Omnipress, 2012. URL http://dblp.uni-trier.de/db/conf/icml/icml2012.
html#HoiWZ12.


http://www.nltk.org/
https://spacy.io/
http://www.aclweb.org/anthology-new/D/D09/D09-1052.bib
http://www.aclweb.org/anthology-new/D/D09/D09-1052.bib
http://arxiv.org/abs/1507.07998
https://pypi.python.org/pypi/langdetect
http://portal.acm.org/citation.cfm?id=1111449.1111471
http://dblp.uni-trier.de/db/conf/icml/icml2012.html#HoiWZ12
http://dblp.uni-trier.de/db/conf/icml/icml2012.html#HoiWZ12

8]

[12]

[13]

[14]

[15]

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Tony
Jebara and Eric P. Xing, editors, Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1188-1196. JMLR Workshop and Conference Proceedings, 2014. URL
http://jmlr.org/proceedings/papers/v32/1leld.pdfl

Hung Ngo, Matthew Luciw, Ngo Anh Vien, and Jiirgen Schmidhuber. Upper confidence weighted
learning for efficient exploration in multiclass prediction with binary feedback, 2013.

M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980. doi: 10.1108/
eb046814.

Radim Rehurek. Gensim, Software Framework for Topic Modelling with Large Corpora. https:
//radimrehurek.com/gensim, 2015. [Version 0.12.4, License: LGPL].

Radim Rehurek. Hivemall: Hive scalable machine learning library. https://github.com/myui/
hivemall, 2015. [Version 0.11, License: Apache v2].

Leonard Richardson. Beautiful Soup. http://www.crummy.com/software/BeautifulSoup/, 2015.
[Version 4.4.1, License: MIT].

Jacques Savoy. IR Multilingual Resources at UniNE. http://members.unine.ch/jacques.savoy/
clef/index.html, 2005. [Online; last accessed 22-March-2016].

Tom De Smedt and Walter Daelemans. Pattern for python. Journal of Machine Learning Research,
13:2063-2067, 2012. URL http://www.clips.ua.ac.be/pattern. [Version 3.6, License BSD].

Stanford. Stanford Log-linear Part-Of-Speech Tagger. http://nlp.stanford.edu/software/
tagger.html, 2015. [Version 3.6.0, Dual License:, GNU full GPL v2 for open source software
and commercial license for closed source software].


http://jmlr.org/proceedings/papers/v32/le14.pdf
https://radimrehurek.com/gensim
https://radimrehurek.com/gensim
https://github.com/myui/hivemall
https://github.com/myui/hivemall
http://www.crummy.com/software/BeautifulSoup/
http://members.unine.ch/jacques.savoy/clef/index.html
http://members.unine.ch/jacques.savoy/clef/index.html
http://www.clips.ua.ac.be/pattern
http://nlp.stanford.edu/software/tagger.html
http://nlp.stanford.edu/software/tagger.html

	General strategy for email classification
	Pre-Processing
	Tokenization
	Stop Words Removal
	Stemming
	Lemmatization
	Part of Speech Tagging

	Features Extraction
	Selecting a Classifier
	Exact Soft Confidence Weighed (SCW SCW)


	Algorithm Description
	Preprocessing
	Features extraction
	Classification
	Updating the model and classifier
	Pre-training the model and classifier
	Dealing with removed or new categories
	Dealing with multiple languages
	Dealing with multiple clients
	Hosting the algorithm
	Dealing with very long email messages
	Miscellaneous and Disadvantages
	Scalability, Advantages and Past Uses cases

	Software and Libraries

